96 research outputs found

    Exploring the Impact of Brexit on UK’S Engineering Education Sector from the Perspective of European Students and Staff

    Get PDF
    The UK higher education attracts a far higher number of international academics from all over the world, who teach and do research, than any other country in Europe, being only surpassed by Switzerland [1]. Moreover, because engineering itself is considered a global field, this sub-field of higher education also relies on international mobility more than most academic disciplines in the UK The impact of the United Kingdom European Union membership referendum of June 2016, commonly referenced as the Brexit referendum, is still unfolding and under continuing analysis. However, it is widely anticipated that it will disrupt European student and staff mobility and may have negative repercussions for education, research and innovation

    Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    Get PDF
    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil core

    Design and Implementation of a Collaborative Clinical Practice and Research Documentation System Using SNOMED-CT and HL7-CDA in the Context of a Pediatric Neurodevelopmental Unit

    Get PDF
    This paper introduces a prototype for clinical research documentation using the structured information model HL7 CDA and clinical terminology (SNOMED CT). The proposed solution was integrated with the current electronic health record system (EHR-S) and aimed to implement interoperability and structure information, and to create a collaborative platform between clinical and research teams. The framework also aims to overcome the limitations imposed by classical documentation strategies in real-time healthcare encounters that may require fast access to complex information. The solution was developed in the pediatric hospital (HP) of the University Hospital Center of Coimbra (CHUC), a national reference for neurodevelopmental disorders, particularly for autism spectrum disorder (ASD), which is very demanding in terms of longitudinal and cross-sectional data throughput. The platform uses a three-layer approach to reduce components’ dependencies and facilitate maintenance, scalability, and security. The system was validated in a real-life context of the neurodevelopmental and autism unit (UNDA) in the HP and assessed based on the functionalities model of EHR-S (EHR-S FM) regarding their successful implementation and comparison with state-of-the-art alternative platforms. A global approach to the clinical history of neurodevelopmental disorders was worked out, providing transparent healthcare data coding and structuring while preserving information quality. Thus, the platform enabled the development of user-defined structured templates and the creation of structured documents with standardized clinical terminology that can be used in many healthcare contexts. Moreover, storing structured data associated with healthcare encounters supports a longitudinal view of the patient’s healthcare data and health status over time, which is critical in routine and pediatric research contexts. Additionally, it enables queries on population statistics that are key to supporting the definition of local and global policies, whose importance was recently emphasized by the COVID pandemic.info:eu-repo/semantics/publishedVersio

    A Combine On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker

    Full text link
    An upgrade to the ATLAS silicon tracker cooling control system may require a change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6 (hexafluoro-ethane) to reduce the evaporation temperature and better protect the silicon from cumulative radiation damage with increasing LHC luminosity. Central to this upgrade is a new acoustic instrument for the real-time measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its Supervisory, Control and Data Acquisition (SCADA) software are described in this paper. The instrument has demonstrated a resolution of 3.10-3 for C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw), higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has been seen. The instrument has many potential applications, including the analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture and anaesthesia

    Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors

    Full text link
    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom electronics, currently in use in the ATLAS inner detector, with numerous potential applications. The instrument has demonstrated ~0.3% mixture precision for C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and high flow versions of the instrument have demonstrated flow resolutions of +/- 2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow velocities up to 15 ms-1; the latter flow approaching that expected in the vapour return of the thermosiphon fluorocarbon coolant recirculator being built for the ATLAS silicon tracker.Comment: Paper submitted to TWEPP2012; Topical Workshop on Electronics for Particle Physics, Oxford, UK, September 17-21, 2012. KEYWORDS: Sonar; Saturated fluorocarbons; Flowmetry; Sound velocity, Gas mixture analysis. 8 pages, 7 figure

    Epileptic Seizure Detection Using a Convolutional Neural Network

    Get PDF
    The availability of electroencephalogram (EEG) data has opened up the possibility for new interesting applications, such as epileptic seizure detection. The detection of epileptic activity is usually performed by an expert based on the analysis of the EEG data. This paper shows how a convolutional neural network (CNN) can be applied to EEG images for a full and accurate classification. The proposed methodology was applied on images reflecting the amplitude of the EEG data over all electrodes. Two groups are considered: (a) healthy subjects and (b) epileptic subjects. Classification results show that CNN has a potential in the classification of EEG signals, as well as the detection of epileptic seizures by reaching 99.48% of overall classification accuracy

    Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip

    Get PDF
    The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS

    Geological repositories: scientific priorities and potential high-technology transfer from the space and physics sectors

    Get PDF
    The use of underground geological repositories, such as in radioactive waste disposal (RWD) and in carbon capture (widely known as Carbon Capture and Storage; CCS), constitutes a key environmental priority for the 21st century. Based on the identification of key scientific questions relating to the geophysics, geochemistry and geobiology of geodisposal of wastes, this paper describes the possibility of technology transfer from high-technology areas of the space exploration sector, including astrobiology, planetary sciences, astronomy, and also particle and nuclear physics, into geodisposal. Synergies exist between high technology used in the space sector and in the characterization of underground environments such as repositories, because of common objectives with respect to instrument miniaturization, low power requirements, durability under extreme conditions (in temperature and mechanical loads) and operation in remote or otherwise difficult to access environments

    Regional and experiential differences in surgeon preference for the treatment of cervical facet injuries: a case study survey with the AO Spine Cervical Classification Validation Group

    Get PDF
    Purpose: The management of cervical facet dislocation injuries remains controversial. The main purpose of this investigation was to identify whether a surgeon’s geographic location or years in practice influences their preferred management of traumatic cervical facet dislocation injuries. Methods: A survey was sent to 272 AO Spine members across all geographic regions and with a variety of practice experience. The survey included clinical case scenarios of cervical facet dislocation injuries and asked responders to select preferences among various diagnostic and management options. Results: A total of 189 complete responses were received. Over 50% of responding surgeons in each region elected to initiate management of cervical facet dislocation injuries with an MRI, with 6 case exceptions. Overall, there was considerable agreement between American and European responders regarding management of these injuries, with only 3 cases exhibiting a significant difference. Additionally, results also exhibited considerable management agreement between those with ≀ 10 and &gt; 10&nbsp;years of practice experience, with only 2 case exceptions noted. Conclusion: More than half of responders, regardless of geographical location or practice experience, identified MRI as a screening imaging modality when managing cervical facet dislocation injuries, regardless of the status of the spinal cord and prior to any additional intervention. Additionally, a majority of surgeons would elect an anterior approach for the surgical management of these injuries. The study found overall agreement in management preferences of cervical facet dislocation injuries around the globe
    • 

    corecore